Motor Patterns During Walking on a Slippery Walkway
نویسندگان
چکیده
منابع مشابه
Motor patterns during walking on a slippery walkway.
Friction and gravity represent two basic physical constraints of terrestrial locomotion that affect both motor patterns and the biomechanics of bipedal gait. To provide insights into the spatiotemporal organization of the motor output in connection with ground contact forces, we studied adaptation of human gait to steady low-friction conditions. Subjects walked along a slippery walkway (7 m lon...
متن کاملMotor Patterns in Walking.
Despite the fact that locomotion may differ widely in mammals, common principles of kinematic control are at work. These reflect common mechanical and neural constraints. The former are related to the need to maintain balance and to limit energy expenditure. The latter are related to the organization of the central pattern-generating networks.
متن کاملPattern Generation for Walking on Slippery Terrains
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact (slippage and tipover avoidance). Exploiting this formulation inside MPC, we show that safe walking on various terrain...
متن کاملOptimal speeds for walking and running, and walking on a moving walkway.
Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those f...
متن کاملStraight walking and turning on a slippery surface.
In stick insects, walking is the result of the co-action of different pattern generators for the single legs and coordinating inter-leg influences. We have used a slippery surface setup to understand the role the local neuronal processing in the thoracic ganglia plays in the ability of the animal to show turning movements. To achieve this, we removed the influence of mechanical coupling through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurophysiology
سال: 2010
ISSN: 0022-3077,1522-1598
DOI: 10.1152/jn.00499.2009